Skip to content

OceanDataCatalog API

OceanDataStore.data_catalog.OceanDataCatalog

A class to interact with the National Oceanography Centre (NOC) Spatio-Temporal Access Catalogs (STAC).

The catalog provides metadata and access to oceanographic datasets stored in cloud object storage. Users can search the catalog, inspect available Items, and open datasets as familiar xarray data structures.

Parameters:

Name Type Description Default
catalog_name str

Name of the NOC STAC catalog to use.

'noc-model-stac'
catalog_url str

Path or URL to the root STAC catalog. If not provided, a default path to the NOC STAC catalog is used.

None

Attributes:

Name Type Description
catalog Catalog

The root NOC STAC catalog.

collection Collection or None

The current STAC Collection being viewed.

items list of pystac.Item

The list of STAC Items returned from the most recent query.

Methods:

Name Description
item_summary

Summary description of the Items returned from the most recent search.

open_dataset

Open STAC Item asset as an xarray Dataset.

search

Search the NOC STAC Catalog for Items matching the specified criteria.

summary

Summary description of the root Catalog or a selected Collection.

Source code in OceanDataStore/data_catalog.py
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
class OceanDataCatalog:
    """
    A class to interact with the National Oceanography Centre (NOC)
    Spatio-Temporal Access Catalogs (STAC).

    The catalog provides metadata and access to oceanographic
    datasets stored in cloud object storage. Users can search the
    catalog, inspect available Items, and open datasets as familiar
    xarray data structures.

    Parameters
    ----------
    catalog_name : str, optional
        Name of the NOC STAC catalog to use.
    catalog_url : str, optional
        Path or URL to the root STAC catalog. If not provided,
        a default path to the NOC STAC catalog is used.

    Attributes
    ----------
    catalog : pystac.Catalog
        The root NOC STAC catalog.
    collection : pystac.Collection or None
        The current STAC Collection being viewed.
    items : list of pystac.Item
        The list of STAC Items returned from the most recent query.
    """
    def __init__(self,
                 catalog_name: str = "noc-model-stac",
                 catalog_url: str = None
                 ):
        # Define the URL to the NOC STAC root catalog:
        self._stac_url = catalog_url or f"https://noc-msm-o.s3-ext.jc.rl.ac.uk/oceandatastore/{catalog_name}/catalog.json"
        # Store the root catalog as a class attribute:
        self.Catalog = pystac.read_file(self._stac_url)

        # Define the Collection and Items attributes:
        self.Collection = None
        self.Items = None


    @property
    def available_collections(self) -> list[str]:
        """
        List available collection IDs in the NOC STAC catalog.
        """
        return [col.id for col in self.Catalog.get_all_collections()]


    @property
    def available_items(self) -> list[str]:
        """
        List available Item IDs in the current Collection or the root Catalog.
        """
        if self.Items is not None:
            # Return all Item IDs from the most recent search:
            return [item.id for item in self.Items]
        else:
            # Return first 25 Item IDs from the current Collection or root Catalog:
            scope = self.Collection if self.Collection else self.Catalog
            return [next(scope.get_items(recursive=True), None).id for _ in range(25)]


    def summary(self) -> str:
        """
        Summary description of the root Catalog or a selected Collection.
        """
        return (self.Collection or self.Catalog).describe()


    def item_summary(self) -> None:
        """
        Summary description of the Items returned from the most recent search.
        """
        if not self.Items:
            raise ValueError("No Items returned in most recent query. Use 'search()' to query Catalog.")

        for item in self.Items:
            print(f"""
            * Item ID: {item.id}
              Title: {item.properties.get('title', 'No title available')}
              Description: {item.properties.get('description', 'No description available')}
              Platform: {item.properties.get('platform', 'No platform available')}
              Start Date: {item.properties.get('start_datetime', 'No start date available')}
              End Date: {item.properties.get('end_datetime', 'No end date available')}
            """)


    def _filter_items(self,
                      items: list[pystac.Item],
                      platform: Optional[str] = None,
                      variable_name: Optional[str] = None,
                      standard_name: Optional[str] = None,
                      item_name: Optional[str] = None
                      ):
        """
        Filter Items based on specified platform and variable.

        Parameters
        ----------
        items : list[pystac.Item]
            List of STAC Items to filter.
        platform : str, optional
            Platform name to filter Items by.
        variable_name : str, optional
            Variable name to filter Items by.
        standard_name : str, optional
            Standard variable name to filter Items by.
        item_name : str, optional
            Substring to filter Item IDs by.
        """
        if platform:
            items = [item for item in items if platform in item.properties.get('platform', '')]
        if variable_name:
            items = [item for item in items if any(variable_name in var for var in item.properties.get('variables', []))]
        if standard_name:
            items = [item for item in items if any(standard_name in var for var in item.properties.get('variable_standard_names', []))]
        if item_name:
            items = [item for item in items if item_name in item.id]

        return items


    def search(self,
               collection: Optional[str] = None,
               platform: Optional[str] = None,
               variable_name: Optional[str] = None,
               standard_name: Optional[str] = None,
               item_name: Optional[str] = None
               ) -> None:
        """
        Search the NOC STAC Catalog for Items matching the specified criteria.

        When both a platform and a variable / standard name are provided,
        the search returns all Items which match both criteria.

        Parameters
        ----------
        collection : str, optional
            Collection name to search for. Default is None,
            which searches the entire root Catalog.
        platform : str, optional
            Platform name to search for. Default is None,
            which retrieves Items from all platforms.
        variable_name : str, optional
            Variable name to search for. Default is None,
            which retrieves all Items.
        standard_name : str, optional
            Standard variable name to search for. Default is None,
            which retrieves all Items.
        item_name : str, optional
            Substring to filter Item IDs by. Default is None,
            which retrieves all Items.

        Raises
        ------
        ValueError
            If the specified collection is not found in the Catalog.
        ValueError
            If both variable_name and standard_name are specified.
        TypeError
            If any of the input parameters are of incorrect type.
        """
        if not isinstance(collection, (type(None), str)):
            raise TypeError("'collection' must be a string or None.")
        if not isinstance(platform, (type(None), str)):
            raise TypeError("'platform' must be a string or None.")
        if not isinstance(variable_name, (type(None), str)):
            raise TypeError("'variable_name' must be a string or None.")
        if not isinstance(standard_name, (type(None), str)):
            raise TypeError("'standard_name' must be a string or None.")
        if not isinstance(item_name, (type(None), str)):
            raise TypeError("'item_name' must be a string or None.")

        if collection:
            collections = {col.id: col for col in self.Catalog.get_all_collections()}
            if collection not in collections:
                raise ValueError(f"Collection '{collection}' not found. Available: {list(collections)}")
            self.Collection = self.Catalog.get_child(collection)
            items = list(self.Collection.get_items(recursive=True))
        else:
            scope = self.Collection if self.Collection else self.Catalog
            items = list(scope.get_items(recursive=True))

        if (variable_name is not None) and (standard_name is not None):
            raise ValueError("Only one of 'variable_name' or 'standard_name' can be specified.")
        else:
            self.Items = self._filter_items(items=items,
                                            platform=platform,
                                            variable_name=variable_name,
                                            standard_name=standard_name,
                                            item_name=item_name
                                            )
            self.item_summary()


    def _open_item(
            self,
            id: str,
        ) -> pystac.Item:
        """
        Open a STAC Item directly from URL using Item ID.

        Parameters
        ----------
        id : str
            Item ID to open directly from URL.

        Returns
        -------
        pystac.Item
            STAC Item object.
        """
        # Define base URL to the root catalog:
        base_url = os.path.dirname(self._stac_url)

        # Construct URL to the Item JSON file:
        # Assumes Item IDs use path-like representation.
        id_list = [f"{id_n}/" for id_n in id.split("/")]
        id_prefix = "".join(id_list[:3])
        item_url = f"{base_url}/{id_prefix}{id}/{id}.json"

        # Open the Item from the constructed URL:
        item = pystac.Item.from_file(item_url)

        return item


    def _open_icechunk_store(
            self,
            fields: dict,
            branch: str,
            ) -> xr.Dataset:
        """
        Open STAC Item Icechunk store asset as xarray Dataset.

        Parameters
        ----------
        fields : dict
            Dictionary of arguments to s3_storage() defining Icechunk
            S3 storage instance.
        branch : str
            Branch of the Icechunk repository to read.

        Returns
        -------
        xarray.Dataset
            Dataset read from Item asset.
        """
        # Define S3 Object Store containing asset:
        storage = icechunk.s3_storage(
            bucket=fields['bucket'],
            prefix=fields['prefix'],
            region=None,
            anonymous=fields['anonymous'],
            endpoint_url=fields['endpoint_url'],
            force_path_style=True
        )

        # Open Item asset Icechunk repository on specified branch:
        repo = icechunk.Repository.open(storage=storage)
        store = repo.readonly_session(branch=branch).store
        ds = xr.open_zarr(store, consolidated=False)

        return ds


    def _open_zarr_store(
            self,
            fields: dict,
            ) -> xr.Dataset:
        """
        Open STAC Item Zarr store asset as xarray Dataset.

        Parameters
        ----------
        fields : dict
            Dictionary of arguments to open_zarr() defining URL
            and version of Zarr store.

        Returns
        -------
        xarray.Dataset
            Dataset read from Item asset.
        """
        # Open Item asset Zarr store via URL:
        url = f"{fields['endpoint_url']}/{fields['bucket']}/{fields['prefix']}"
        ds = xr.open_zarr(url, zarr_format=int(fields['zarr_format']), consolidated=True)

        return ds


    def open_dataset(self,
                     id: str,
                     variable_names: Optional[list[str]] = None,
                     start_datetime: Optional[str] = None,
                     end_datetime: Optional[str] = None,
                     bbox: Optional[tuple[float, float, float, float]] = None,
                     branch: str = "main",
                     asset_key: Optional[str] = None) -> xr.Dataset:
        """
        Open STAC Item asset as an xarray Dataset.

        Parameters
        ----------
        id : str
            Item ID to open asset.
        variable_names : list[str], optional
            List of variable names to be parsed from the dataset.
            Default is to return all variables.
        start_datetime : str, optional
            Start datetime used to subset the dataset. Should be a string
            in ISO format (e.g., "1976-01-01T00:00:00Z"). Default is to use
            the Item start_datetime.
        end_datetime : str, optional
            End datetime used to subset the dataset. Should be a string
            in ISO format (e.g., "2024-12-31T00:00:00Z"). Default is to use
            the Item end_datetime.
        bbox : tuple[float, float, float, float], optional
            Spatial bounding box used to subset the dataset. Should be a list of four floats
            representing the bounding box in the format: (min_lon, min_lat, max_lon, max_lat).
            Default is to use the Item bbox.
        branch : str, optional
            Branch of the Icechunk repository to use. Default is to use the "main" branch.
        asset_key : str, optional
            Key of the asset to open. Default is to infer the key from the Item ID.

        Returns
        -------
        xarray.Dataset
            Dataset read from Item asset.

        Raises
        ------
        ValueError
            If the Item ID or asset key is not found in the catalog.
        ValueError
            If the asset key is not found in the Item ID.
        KeyError
            If the specified variable(s) are not found in the dataset.
        """
        # -- Validate inputs -- #
        if not isinstance(id, str):
            raise TypeError("'id' must be a string.")
        if not isinstance(variable_names, (type(None), list)):
            raise TypeError("'variable_names' must be a list of strings.")
        if variable_names is not None and not all([isinstance(var, str) for var in variable_names]):
            raise TypeError("'variable_names' must be a list of strings.")
        if not isinstance(start_datetime, (type(None), str)):
            raise TypeError("'start_datetime' must be a string or None.")
        if not isinstance(end_datetime, (type(None), str)):
            raise TypeError("'end_datetime' must be a string or None.")
        if not isinstance(bbox, (type(None), tuple)):
            raise TypeError("'bbox' must be a tuple or None.")
        if bbox is not None and (len(bbox) != 4 or not all(isinstance(coord, float) for coord in bbox)):
            raise TypeError("'bbox' must be a tuple of floats in the form (lon_min, lon_max, lat_min, lat_max).")

        # -- Collect Item Asset -- #
        try:
            item = self._open_item(id=id)
        except Exception:
            raise RuntimeError(f"Item ID '{id}' not found in Catalog.")

        # Infer asset key from Item ID if not provided:
        if asset_key is None:
            asset_key = list(item.assets.keys())[0]
        asset = item.assets.get(asset_key)
        if asset is None:
            raise ValueError(f"Asset key '{asset_key}' not found in Item ID '{id}'.")

        fields = asset.extra_fields

        # Open Icechunk Repository as xarray Dataset:
        if asset.to_dict()['type'] == "application/icechunk":
            required_fields = ['bucket', 'prefix', 'anonymous', 'endpoint_url']
            for field in required_fields:
                if field not in fields:
                    raise ValueError(f"Missing asset field '{field}' in item '{id}'.")
            ds = self._open_icechunk_store(fields=fields, branch=branch)

        # Open Zarr store as xarray Dataset:
        elif asset.to_dict()['type'] == 'application/vnd+zarr':
            required_fields = ['bucket', 'prefix', 'endpoint_url', 'zarr_format']
            for field in required_fields:
                if field not in fields:
                    raise ValueError(f"Missing asset field '{field}' in item '{id}'.")
            ds = self._open_zarr_store(fields=fields)

        else:
            raise ValueError(f"Unsupported media type {asset.to_dict()['type']} for Item asset.")

        # Selecting variables:
        if variable_names is not None:
            try:
                ds = ds[variable_names]
            except KeyError:
                raise KeyError("One or more variables not found in dataset.")

        # Spatio-temporal subsetting:
        if bbox:
            lon = ds.nav_lon.load()
            lat = ds.nav_lat.load()
            ds = ds.where((lon >= bbox[0]) & (lon <= bbox[2]) &
                          (lat >= bbox[1]) & (lat <= bbox[3]), drop=True)

        if start_datetime or end_datetime:
            ds = ds.sel(time_counter=slice(start_datetime, end_datetime))

        return ds

available_collections property

available_collections

List available collection IDs in the NOC STAC catalog.

available_items property

available_items

List available Item IDs in the current Collection or the root Catalog.

item_summary

item_summary()

Summary description of the Items returned from the most recent search.

Source code in OceanDataStore/data_catalog.py
def item_summary(self) -> None:
    """
    Summary description of the Items returned from the most recent search.
    """
    if not self.Items:
        raise ValueError("No Items returned in most recent query. Use 'search()' to query Catalog.")

    for item in self.Items:
        print(f"""
        * Item ID: {item.id}
          Title: {item.properties.get('title', 'No title available')}
          Description: {item.properties.get('description', 'No description available')}
          Platform: {item.properties.get('platform', 'No platform available')}
          Start Date: {item.properties.get('start_datetime', 'No start date available')}
          End Date: {item.properties.get('end_datetime', 'No end date available')}
        """)

open_dataset

open_dataset(id, variable_names=None, start_datetime=None, end_datetime=None, bbox=None, branch='main', asset_key=None)

Open STAC Item asset as an xarray Dataset.

Parameters:

Name Type Description Default
id str

Item ID to open asset.

required
variable_names list[str]

List of variable names to be parsed from the dataset. Default is to return all variables.

None
start_datetime str

Start datetime used to subset the dataset. Should be a string in ISO format (e.g., "1976-01-01T00:00:00Z"). Default is to use the Item start_datetime.

None
end_datetime str

End datetime used to subset the dataset. Should be a string in ISO format (e.g., "2024-12-31T00:00:00Z"). Default is to use the Item end_datetime.

None
bbox tuple[float, float, float, float]

Spatial bounding box used to subset the dataset. Should be a list of four floats representing the bounding box in the format: (min_lon, min_lat, max_lon, max_lat). Default is to use the Item bbox.

None
branch str

Branch of the Icechunk repository to use. Default is to use the "main" branch.

'main'
asset_key str

Key of the asset to open. Default is to infer the key from the Item ID.

None

Returns:

Type Description
Dataset

Dataset read from Item asset.

Raises:

Type Description
ValueError

If the Item ID or asset key is not found in the catalog.

ValueError

If the asset key is not found in the Item ID.

KeyError

If the specified variable(s) are not found in the dataset.

Source code in OceanDataStore/data_catalog.py
def open_dataset(self,
                 id: str,
                 variable_names: Optional[list[str]] = None,
                 start_datetime: Optional[str] = None,
                 end_datetime: Optional[str] = None,
                 bbox: Optional[tuple[float, float, float, float]] = None,
                 branch: str = "main",
                 asset_key: Optional[str] = None) -> xr.Dataset:
    """
    Open STAC Item asset as an xarray Dataset.

    Parameters
    ----------
    id : str
        Item ID to open asset.
    variable_names : list[str], optional
        List of variable names to be parsed from the dataset.
        Default is to return all variables.
    start_datetime : str, optional
        Start datetime used to subset the dataset. Should be a string
        in ISO format (e.g., "1976-01-01T00:00:00Z"). Default is to use
        the Item start_datetime.
    end_datetime : str, optional
        End datetime used to subset the dataset. Should be a string
        in ISO format (e.g., "2024-12-31T00:00:00Z"). Default is to use
        the Item end_datetime.
    bbox : tuple[float, float, float, float], optional
        Spatial bounding box used to subset the dataset. Should be a list of four floats
        representing the bounding box in the format: (min_lon, min_lat, max_lon, max_lat).
        Default is to use the Item bbox.
    branch : str, optional
        Branch of the Icechunk repository to use. Default is to use the "main" branch.
    asset_key : str, optional
        Key of the asset to open. Default is to infer the key from the Item ID.

    Returns
    -------
    xarray.Dataset
        Dataset read from Item asset.

    Raises
    ------
    ValueError
        If the Item ID or asset key is not found in the catalog.
    ValueError
        If the asset key is not found in the Item ID.
    KeyError
        If the specified variable(s) are not found in the dataset.
    """
    # -- Validate inputs -- #
    if not isinstance(id, str):
        raise TypeError("'id' must be a string.")
    if not isinstance(variable_names, (type(None), list)):
        raise TypeError("'variable_names' must be a list of strings.")
    if variable_names is not None and not all([isinstance(var, str) for var in variable_names]):
        raise TypeError("'variable_names' must be a list of strings.")
    if not isinstance(start_datetime, (type(None), str)):
        raise TypeError("'start_datetime' must be a string or None.")
    if not isinstance(end_datetime, (type(None), str)):
        raise TypeError("'end_datetime' must be a string or None.")
    if not isinstance(bbox, (type(None), tuple)):
        raise TypeError("'bbox' must be a tuple or None.")
    if bbox is not None and (len(bbox) != 4 or not all(isinstance(coord, float) for coord in bbox)):
        raise TypeError("'bbox' must be a tuple of floats in the form (lon_min, lon_max, lat_min, lat_max).")

    # -- Collect Item Asset -- #
    try:
        item = self._open_item(id=id)
    except Exception:
        raise RuntimeError(f"Item ID '{id}' not found in Catalog.")

    # Infer asset key from Item ID if not provided:
    if asset_key is None:
        asset_key = list(item.assets.keys())[0]
    asset = item.assets.get(asset_key)
    if asset is None:
        raise ValueError(f"Asset key '{asset_key}' not found in Item ID '{id}'.")

    fields = asset.extra_fields

    # Open Icechunk Repository as xarray Dataset:
    if asset.to_dict()['type'] == "application/icechunk":
        required_fields = ['bucket', 'prefix', 'anonymous', 'endpoint_url']
        for field in required_fields:
            if field not in fields:
                raise ValueError(f"Missing asset field '{field}' in item '{id}'.")
        ds = self._open_icechunk_store(fields=fields, branch=branch)

    # Open Zarr store as xarray Dataset:
    elif asset.to_dict()['type'] == 'application/vnd+zarr':
        required_fields = ['bucket', 'prefix', 'endpoint_url', 'zarr_format']
        for field in required_fields:
            if field not in fields:
                raise ValueError(f"Missing asset field '{field}' in item '{id}'.")
        ds = self._open_zarr_store(fields=fields)

    else:
        raise ValueError(f"Unsupported media type {asset.to_dict()['type']} for Item asset.")

    # Selecting variables:
    if variable_names is not None:
        try:
            ds = ds[variable_names]
        except KeyError:
            raise KeyError("One or more variables not found in dataset.")

    # Spatio-temporal subsetting:
    if bbox:
        lon = ds.nav_lon.load()
        lat = ds.nav_lat.load()
        ds = ds.where((lon >= bbox[0]) & (lon <= bbox[2]) &
                      (lat >= bbox[1]) & (lat <= bbox[3]), drop=True)

    if start_datetime or end_datetime:
        ds = ds.sel(time_counter=slice(start_datetime, end_datetime))

    return ds

search

search(collection=None, platform=None, variable_name=None, standard_name=None, item_name=None)

Search the NOC STAC Catalog for Items matching the specified criteria.

When both a platform and a variable / standard name are provided, the search returns all Items which match both criteria.

Parameters:

Name Type Description Default
collection str

Collection name to search for. Default is None, which searches the entire root Catalog.

None
platform str

Platform name to search for. Default is None, which retrieves Items from all platforms.

None
variable_name str

Variable name to search for. Default is None, which retrieves all Items.

None
standard_name str

Standard variable name to search for. Default is None, which retrieves all Items.

None
item_name str

Substring to filter Item IDs by. Default is None, which retrieves all Items.

None

Raises:

Type Description
ValueError

If the specified collection is not found in the Catalog.

ValueError

If both variable_name and standard_name are specified.

TypeError

If any of the input parameters are of incorrect type.

Source code in OceanDataStore/data_catalog.py
def search(self,
           collection: Optional[str] = None,
           platform: Optional[str] = None,
           variable_name: Optional[str] = None,
           standard_name: Optional[str] = None,
           item_name: Optional[str] = None
           ) -> None:
    """
    Search the NOC STAC Catalog for Items matching the specified criteria.

    When both a platform and a variable / standard name are provided,
    the search returns all Items which match both criteria.

    Parameters
    ----------
    collection : str, optional
        Collection name to search for. Default is None,
        which searches the entire root Catalog.
    platform : str, optional
        Platform name to search for. Default is None,
        which retrieves Items from all platforms.
    variable_name : str, optional
        Variable name to search for. Default is None,
        which retrieves all Items.
    standard_name : str, optional
        Standard variable name to search for. Default is None,
        which retrieves all Items.
    item_name : str, optional
        Substring to filter Item IDs by. Default is None,
        which retrieves all Items.

    Raises
    ------
    ValueError
        If the specified collection is not found in the Catalog.
    ValueError
        If both variable_name and standard_name are specified.
    TypeError
        If any of the input parameters are of incorrect type.
    """
    if not isinstance(collection, (type(None), str)):
        raise TypeError("'collection' must be a string or None.")
    if not isinstance(platform, (type(None), str)):
        raise TypeError("'platform' must be a string or None.")
    if not isinstance(variable_name, (type(None), str)):
        raise TypeError("'variable_name' must be a string or None.")
    if not isinstance(standard_name, (type(None), str)):
        raise TypeError("'standard_name' must be a string or None.")
    if not isinstance(item_name, (type(None), str)):
        raise TypeError("'item_name' must be a string or None.")

    if collection:
        collections = {col.id: col for col in self.Catalog.get_all_collections()}
        if collection not in collections:
            raise ValueError(f"Collection '{collection}' not found. Available: {list(collections)}")
        self.Collection = self.Catalog.get_child(collection)
        items = list(self.Collection.get_items(recursive=True))
    else:
        scope = self.Collection if self.Collection else self.Catalog
        items = list(scope.get_items(recursive=True))

    if (variable_name is not None) and (standard_name is not None):
        raise ValueError("Only one of 'variable_name' or 'standard_name' can be specified.")
    else:
        self.Items = self._filter_items(items=items,
                                        platform=platform,
                                        variable_name=variable_name,
                                        standard_name=standard_name,
                                        item_name=item_name
                                        )
        self.item_summary()

summary

summary()

Summary description of the root Catalog or a selected Collection.

Source code in OceanDataStore/data_catalog.py
def summary(self) -> str:
    """
    Summary description of the root Catalog or a selected Collection.
    """
    return (self.Collection or self.Catalog).describe()