module grid
class GRID
Class that provides methods to handle and regrid gridded datasets for NEMO.
method __init__
__init__(
data_filename=None,
dataset=None,
ds_lon_name=None,
ds_lat_name=None,
ds_z_name=None,
ds_time_counter="time_counter",
convert_to_z_grid=False,
z_kwargs={},
equation_of_state=None,
)
Initialize the GRID class with the specified dataset and coordinate names.
Args:
data_filename
(str, optional): Path to the dataset file on the desired grid.dataset
(xarray.Dataset, optional): xarray Dataset objectds_lon_name
(str, optional): The name of the longitude variable in the dataset. If None, it will be inferred from common names.ds_lat_name
(str, optional): The name of the latitude variable in the dataset. If None, it will be inferred from common names.ds_z_name
(str, optional): The name of the depth coordinate, assume z.ds_time_counter
(str, optional): The name of the time counter variable in the dataset, assume time_counter.convert_to_z_grid
(bool, optional): whether to convert from a sigma-level grid to a z-level grid.z_kwargs
(dict, optional): additional details required for vertical conversionequation_of_state
(str, optional): the equation of state of the data.
method extract_lonlat
Extract longitude and latitude data arrays from the dataset.
Args:
lon_name
(str, optional): The name of the longitude variable. If None, it will be inferred.lat_name
(str, optional): The name of the latitude variable. If None, it will be inferred.
Returns:
tuple
: A tuple containing the longitude DataArray, latitude DataArray, and their respective names.
Raises:
Exception
: If the specified longitude or latitude variable is not found in the dataset.
method get_dim_varname
Retrieve the variable name corresponding to a specified dimension type (longitude or latitude).
Args:
dimtype
(str): The type of dimension ('longitude' or 'latitude').
Returns:
str
: The variable name for the specified dimension.
Raises:
Exception
: If the variable name for the specified dimension is not found in the dataset.
method make_common_coords
Align the grid dataset with common coordinate names for regridding.
Args:
z_name
(str): name of the depth coordinate.lon_name
(str): The name of the longitude coordinate.lat_name
(str): The name of the latitude coordinate.time_counter
(str, optional): The name of the time counter variable. Defaults to "time_counter".
Returns:
xarray.Dataset
: The dataset with standardized coordinate names and attributes for regridding.
method open_dataset
Open a dataset from a specified filename using xarray.
Args:
filename
(str): The path to the dataset file.convert_to_z
(bool): whether to convert data to a z gridz_kwargs
(dict): arguments for vertical conversion
Returns:
xarray.Dataset
: The opened dataset.
method vertical_convert
Vertical conversion of data using xgcm's built in vertical conversion with their Grid
class.
Args:
ds_grid
(xarray.Dataset): data set on some metric of depth (let's say salinity)z_kwargs
(dict): dict containing at least {'variable':str/list of strs,'target':array_like}. Other arguments are as in the xgcm documentation:https
: //xgcm.readthedocs.io/en/latest/transform.html?highlight=verticalperiodic
(bool): passed to xgcm.Grid.
Returns:
xarray.Dataset
: Vertically regridded data set.
This file was automatically generated via lazydocs.